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Abstract

The so-called “anemone” solar flares are an interesting type of the space
plasma phenomena, where multiple null points of the magnetic field are con-
nected with each other and with the magnetic sources by the separators,
thereby producing the complex branching configurations. Here, using the
methods of dynamical systems and Morse–Smale theory, we derive a few
universal topological relations between the numbers of the null points and
sources of various kinds with arbitrary arrangement in the above-mentioned
structures. Such relations can be a valuable tool both for a quantification of
the already-observed anemone flares and for a prediction of the new ones in
complex magnetic configurations.
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Figure 1: The hypothesized structure of magnetic field lines in the anemone flare [5] (left
panel, reprinted with permission from the American Association for the Advancement of
Science ©2007) vs. the picture taken by the New Solar Telescope in the Big Bear Solar
Observatory [6] (middle panel, reprinted with permission from the American Astronomical
Society ©2016), as well as an example of the biological anemone (right panel, courteously
provided by G.A. Porfir’eva).

1. Introduction

The solar flares are among the most energetic phenomena in the Solar
System, substantially affecting our space environment. They are commonly
assumed to be produced by the so-called magnetic reconnection, when the
magnetic field lines break and then merge with each other in a new configura-
tion, while the excessive energy is released in the form of the heated plasmas
and accelerated particles [1, 2].

From the geometric point of view, the flares are usually formed by the
sets of magnetic arcades, rooted at the solar surface (or the so-called photo-
sphere) and extending up to the upper layers (the solar corona). These arcs
can be immediately observed in the hard ultraviolet and X-rays, while their
footpoints are usually observable in the visible light as two approximately
parallel ribbons [3]. In some cases, the magnetic arcades can intersect each
other, forming more complex spatial configurations [4], but their topology
remains quite trivial.

On the other hand, a much more sophisticated topology can be realized in
the so-called anemone microflares, occurring in the solar chromosphere (i.e.,
a bit above the photosphere). The first hints to this phenomenon were given
by observations of Hinode satellite [5]. Namely, a few diverging small-scale
luminous ribbons were found in the base of such flares. Then, they were
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Figure 2: Magnetic-field sources and sinks in the solar atmosphere, caused by the open ends
of the magnetic-flux tubes under the photosphere (left panel), and their formal reduction
to the magnetic charges (positive and negative, respectively) in the plane z = 0 (right
panel).

qualitatively interpreted as footpoints of the magnetic field lines experienc-
ing the bifurcations (branching) at some height in the course of magnetic
reconnection (left panel in Fig. 1). A decade later, such bifurcations became
directly observable by the New Solar Telescope in the Big Bear Solar Obser-
vatory (California, USA) [6]; a particular example is presented in the middle
panel of Fig. 1. At last, the right panel of this figure illustrates a remark-
able similarity of such flares with the sea anemone, which are well known in
biology.

A theoretical interpretation of the above-mentioned phenomenon requires
a consideration of bifurcations of the solar magnetic fields, for example, in
the framework of the potential field model formed by the effective point-like
charges.

1.1. The Concept of the Effective Magnetic Charges

Since both the present paper and a number of previous studies on the
topology of solar magnetic fields were substantially based on the idea of the
effective magnetic charges, it it reasonable to explain this concept in more
detail. Strictly speaking, any magnetic field is non-divergent (divB = 0).
Therefore, its field lines are closed, and there cannot exist any magnetic
charges (sources and sinks). However, it is often convenient to introduce the
“effective” magnetic charges in the sense illustrated in Fig. 2.

Namely, the electric currents j in the deep layers of the Sun (where the
collisional frequencies of both electrons and ions are much greater than their
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gyrofrequencies, νe,i≫Ωe,i) form the tubes of the concentrated magnetic flux.
The open ends of such tubes at the surface of photosphere, z = 0, serve
as the sources and sinks of the magnetic field in the upper layers of the
Sun, which are collisionless, νe,i≪Ωe,i (left panel in Fig. 2). Moreover, in
certain circumstances, this magnetic field is approximately current-free, i.e.,
potential (rotB = 0).

Next, one can consider only the upper semispace (z≥ 0) and formally
perform its mirror reflection with respect to the plane z=0 (right panel in
the same figure). As a result, we get a symmetric pattern of the magnetic-field
lines, whose sources and sinks (the effective “magnetic charges”) are located
exactly in the plane z=0. Therefore, as was pictorially outlined in paper [7],
“magnetic field enters the corona from the interior of the Sun through isolated
magnetic features on the solar surface. These features correspond to the tops
of submerged magnetic flux tubes, and coronal field lines often connect one
flux tube to another, defining a pattern of inter-linkage. Using a model field,
in which flux tubes are represented as point magnetic charges, it is possible
to quantify this inter-linkage.”

The potential field generated by the set of charges (monopoles) is sim-
ilar to the electrostatic field, and it is quite convenient for the subsequent
mathematical analysis. Of course, some care must be taken in the interpre-
tation of the corresponding mathematical results. For example, if one have
found some number of peculiarities of the field (e.g., null points) beyond the
plane z=0, then only one half of them will have a real physical meaning
(namely, those located in the upper semispace). On the other hand, if such
peculiarities are localized exactly in the plane z=0, then all of them should
be treated as physically relevant.

1.2. Review of the Previous Studies

While the term “topology of magnetic field” is widely employed in the
literature on solar physics, there were actually a very few papers devoted to
the rigorous topological analysis of the respective magnetic configurations.
They were usually based on the computer simulations supplemented by some
analytical results from the algebraic topology. One of the first works of this
kind was paper [8], whose authors analyzed a few particular configurations
of the magnetic field produced by the four magnetic charges (two positive
and two negative) with equal magnitudes. A much more general analysis
of approximately the same situation was performed in paper [9], where four
magnetic charges were allowed to be arbitrary located in the plane of the
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photosphere. Next, employing some theorems of differential geometry and
algebraic topology, the authors established the general criteria for the exis-
tence of null points of various types (both in and out of the plane of charges)
depending on the localization of the charges. The most interesting finding
was that there are such positions of the magnetic charges when a tiny dis-
placement of one of them results in the emergence of a new null point and its
fast motion over a considerable distance high above the plane of the sources.
This fact inspired a new mechanism of the magnetic reconnection, the so-
called “topological trigger” [10]; examples of its practical application to the
particular flares can be found, e.g., in paper [11].

Next, bifurcations of the null points in the systems formed by three and
four unbalanced irregularly-located charges were analyzed in paper [12]. On
the other hand, paper [13] dealt with a highly-symmetric configuration: the
numerous positive magnetic charges (sources) were localized in the nodes of
a hexagonal network (mimicking the so-called supergranule convective cells)
and a single negative charge (sink) was placed in the center of this structure.
Then, the authors sought for the null points both in and above the plane of
the charges, as well as studied their emergence and displacement depending
on the magnitude of the central sink and its shift from the center of symme-
try. A further discussion of both symmetric and irregular magnetic-charge
configurations with special emphasis on the emergence of the “off-plane” null
points was given in paper [14]. Review of application of various topological
methods in the solar physics can be found in paper [15].

As follows from the above discussion, the previous works treated either
configurations with rather symmetric arrangement or very small number of
the magnetic charges. On the other hand, in view of the recent interest to
the anemone (branching) solar flares, it would be important to get criteria
for the emergence of null points when the magnetic charges are numerous
and located irregularly. So, it is the aim of the present paper to perform
such analysis by using the Morse–Smale theory of vector fields.1

2. Summary of the main results

The magnetic charge is called positive if the field flux through an arbitrary
small sphere covering the charge is positive. The negative charge is defined

1Yet another application of the Morse–Smale theory to the analysis of magnetic fields
in plasmas can be found in paper [16].
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Figure 3: Structure of the null point (a) and the heteroclinic separator (b).

by a similar way: the field flux through an arbitrary small sphere covering
such a charge is negative.

The group of charges C is called positively unbalanced if it can be em-
bedded into the ball B so that the magnetic field is directed outwards at its
boundary. The above-specified ball B = B(C) will be called a source region
of the group C. The negatively unbalanced group of charges is defined by a
similar way, and it is associated with a sink region of the group.

The idealized magnetic charge corresponds to a point-like singularity in
the vector field; the positive charge being considered as a source and the
negative charge as a sink of the field. The point p0 of the magnetic field B is
called the null point if B(p0) = 0. The eigenvalues λ1, λ2 and λ3 in the null
point are typically nonzero and satisfy the equality λ1+λ2+λ3 = 0, because
∇·B = 0. Consequently, from the viewpoint of the theory of dynamical
systems, the null point is a conservative saddle, possessing one 1D and one 2D
separatrices; see figure 3(a).2 If the magnetic field line on the 1D separatrix is
directed from the null point, then all field lines on the 2D separatrix surface
are directed to the null point; and vice versa.

The following two cases are possible for a typical null point p0 (up to
redefinition of the eigenvalues):
(1) λ1 > 0, λ2, λ3 < 0;
(2) λ1 < 0, λ2, λ3 > 0.

In the first case, the null point p0 is called positive, because λ1·λ2·λ3 > 0.
From the viewpoint of the theory of dynamical systems, the positive null
point represents a saddle with Morse index equal to 1 and topological in-

2The 1D separatrix is sometimes called the spine; and 2D separatrix, the fan [1].
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dex equal to −1. Such saddle has a 1D unstable separatrix and a 2D sta-
ble separatrix. In the second case, the point p0 is called negative, because
λ1·λ2·λ3 < 0. Such null point is a saddle with Morse index equal to 2 and
topological index equal to +1. This saddle has a 1D stable separatrix and
2D unstable separatrix; see Fig. 3(a).

Following the standard terminology [1], the magnetic field line connect-
ing two null points will be called a separator.The separator is called hetero-
clinic if it represents a transversal intersection of two separatrix surfaces; see
Fig. 3(b). Topological structure of the magnetic field is determined by the
number and types of the null points, by the location of spines and fans with
respect to each other, and by the lines of transversal intersection of the fan
surfaces, i.e., the heteroclinic separators.

Theorem 1. Let a positively unbalanced group C contain l ≥ 2 positive
charges. Then there exist at least l − 1 negative null points in the source
region B(C) of this group. If the group C consists of l ≥ 2 positive charges
and there is exactly l − 1 null points in B(C), then all these null points are
negative and there are no separators in B(C). Moreover, the magnetic field
in region B(C) possesses a uniquely defined, up to the topological equivalence,
structure.

The next consequences follow from this theorem.

Corollary 1. Let a negatively unbalanced group C contain k ≥ 2 negative
charges. Then there exist at least k − 1 positive null points in the sink re-
gion B(C) of this group. If the group C consists of k ≥ 2 negative charges
and there is exactly k − 1 null points in B(C), then all these null points are
positive and there are no separators in B(C).

Corollary 2. Let a positively unbalanced group C contain one (dominant)
positive charge and k ≥ 1 negative charges. Then there exist at least k positive
null points in the source region B(C) of this group. If B(C) contains exactly
k null points, then all these points are positive and there are no separators
in B(C). Moreover, the magnetic field in region B(C) possesses a uniquely
defined, up to the topological equivalence, structure.

Corollary 3. Let a positively unbalanced group C contain l ≥ 2 positive and
k ≥ 1 negative charges. Then there exist at least l − 1 negative null points
and at least k positive null points in the source region B(C) of this group.
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At the minimal numbers of both the positive and negative null points
(which are determined by Corollary 3), the separators can be absent. Nev-
ertheless, as follows from the subsequent theorem, as soon as at least one
“excessive” null point appears, at least one separator is inevitably formed.
The type of the excessive null point is of no importance: it can be either
positive or negative. For the sake of definiteness, we shall consider the case
when the excessive point is negative.

Theorem 2. Let a positively unbalanced group C contain l ≥ 2 positive and
k ≥ 0 negative charges. If B(C) contains exactly l negative null points, then
there is at least one separator in B(C).

The last theorem demonstrates a particular scenario of emergence of a
negative null point, when there is a family of separators whose number is
equal to the number of negative null points (and it is equal also to the
number of positive charges).

Theorem 3. Let a positively unbalanced group C contain l ≥ 2 positive
charges and l− 1 negative null points. Then there exists a typical bifurcation
for birth of l heteroclinic separators and one negative null point.

3. Auxiliary information

Let f t be a flow induced by the vector field V on the 3D sphere S
3. We

shall assume that f t has no periodic trajectories. Let Fix (f t) designate a set
of equilibrium states of the flow f t. For p ∈ Fix (f t), let W s(p) be a set of
trajectories approaching p at infinitely increasing time.3 In particular, if p is a
saddle, then W s(p)\{p} is a stable separatrix of the saddle p. The set W s(p)
is called the stable manifold of the point p. Similarly, let W u(p) denote a set
of trajectories approaching p at infinitely decreasing time. In particular, if
p is a saddle, then W u(p)\{p} is an unstable separatrix of the saddle p. The
set W u(p) is called the unstable manifold of the point p. The flow f t is called
the Morse–Smale flow if all its equilibrium states are hyperbolic, their stable
and unstable manifolds intersect each other transversally, and the limit set

3From here on, the independent variable t will be called time, as it is commonly accepted
in the theory of dynamical systems. However, it should be kept in mind that from the
physical point of view this is actually a variable parametrizing the length of the magnetic
field line.
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for any trajectory belongs to Fix (f t). The corresponding vector field V is
called the Morse–Smale vector field [17].

Let vsourse denote the vector field in ball B3 directed outwards at the ball
boundary ∂B3 = S2 and possessing exactly one source inside the ball. Let
us assume that vsink = −vsourse. Obviously, the vector field vsink possesses
exactly one sink inside the ball B3, and vsink is directed inwards the ball B3

at the boundary S2.
Let B(C) be the source region of the group of charges C. Let v(C) denote

the magnetic field in B(C) created by the group C. We remind that the vector
field v(C) is directed outwards at the boundary ∂B(C) of the ball B(C). If
boundaries ∂B3 = S2 and ∂B(C) of the balls B3 and B(C), respectively, are
identical to each other, then we get a 3D sphere S

3. The field vsink near
the boundary ∂B3 can be corrected so that the fields vsink and v(C) form
a smooth Morse–Smale vector field at S

3, which will be denoted by V(C).
Obviously, a global topological structure of the field vsink can be preserved
after such transformation. Then the equilibrium states ofV(C) will represent
a union of the equilibrium states for the field v(C) and the sink field vsink.
The vector field V(C) will be called a continuation of the field v(C) by the
group C to the 3D sphere S

3.

Lemma 1. Let a positively unbalanced group C contains N+ (respectively, N−)
positive (respectively, negative) charges and S+ (respectively, S−) positive
(respectively, negative) null points. Then the following equality is satisfied:

1 +N− − S+ + S− −N+ = 0. (1)

Proof. Let v(C) be the magnetic field in B(C) formed by the group C and
V(C) be a continuation of the field v(C) to the 3D sphere S

3. The charges
and null points of the magnetic vector field v(C) are the equilibrium states
of the Morse–Smale vector field V(C). We remind that V(C), as compared
to v(C), has an additional sink whose topological index is equal to unity.

Morse index (dimensionality of the unstable manifold) of the positive null
point equals unity. Consequently, the topological index of such a point equals
minus unity. Similarly, the topological index of a negative null point equals
unity, because its Morse index equals two. Morse index of a negative (re-
spectively, positive) charge equals zero (respectively, three). Therefore, the
topological index of a negative (respectively, positive) charge equals unity
(respectively, minus unity). As is known, Euler characteristic of 3D sphere
equals zero. Using the Euler–Poincaré formula, which states that a sum of
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Figure 4: Vector field vsourse (a) and vector field vuns of type (2; 1) in the ball B3 (b).

topological indices of the equilibrium states is equal to the Euler character-
istic, we obtain the required result. ✷

Corollary 4. Let the conditions of lemma 1 be satisfied. If there are no
negative charges in the sink region (N− = 0), then

S− = (N+ − 1) + S+ ≥ N+ − 1.

Let us introduce the partial order≺ in the set of equilibrium states Fix (f t)
of the flow f t. For p, q ∈ Fix (f t), let us define that p ≺ q ifW s(p)∩W u(q) 6=
∅. It is convenient to present the above order in the graph whose points are
identified with the equilibrium states Fix (f t). The graph vertices corre-
sponding to p, q ∈ Fix (f t) and related by the order p ≺ q are connected
by the arc directed from q to the point p. Such a directed graph Γ(f t) is
sometimes called Smale graph (or diagram).

Let us denote a union of all unstable 1D manifolds of the saddles and all
sinks of the flow f t by A(f t). It is known [18] that A(f t) is a connected 1D
subgraph of the graph Γ(f t), whose vertices are identified with the respective
saddles and sinks. In this case, arcs of the subgraph correspond to the 1D
unstable separatrices, and they are supplied with the directions from the
saddles to sinks. Moreover, A(f t) is the attracting set of the flow f t [18].
Similarly, let us denote a union of all stable 1D separatrices of the saddles
and all sources by R(f t). Then, R(f t) is a connected oriented subgraph,
which is a repelling set of the flow f t [18].

To describe a topological structure of the vector fields, we need some
canonical fields. The vector field vsourse will be called the source of type (1; 0).
Let us consider the vector field vuns in the ball B3 directed outwards at the ball
boundary ∂B3 = S2 and possessing l ≥ 2 sources α1, . . . , αl and l− 1 saddles
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σ1, . . . , σl−1 with Morse index 2. Such vector field vuns will be called the
source of type (l; l–1). Structure of the vector field of type (2; 1) is shown in
Fig. 4(b). The vector field vsourse can be treated as the source of type (1; 0),
as illustrated in Fig. 4(a).

Let as assume that vsink = −vsourse and vstab = −vuns. The vector
field vsink is directed inwards at the ball boundary ∂B3 = S2 and has one
sink inside the ball B3. The vector field vstab is directed inwards at the ball
boundary ∂B3 = S2 and has l ≥ 2 sinks ω1, . . . , ωl and l−1 saddles with Morse
index 1. Such vector field vuns will be called the sink of type (l ; l –1). With-
out loss of generality we can assume that the above-mentioned vector fields
are orthogonal to the boundary ∂B3 = S2 and are unitary at this boundary.

If boundaries of two copies of the ball B3 are identified with each other,
then we get a 3-sphere S

3. If a source of the type (l ; l –1) is defined in one
copy of the ball, and the field vsink is defined in another copy of the ball, then
we get a smooth vector field in S

3, which will be denoted by Vuns(l; l−1). In
fact, the following statement follows from the works [18] and [19]:

Proposition 1. Let the Morse–Smale vector field V be defined in the 3D
sphere S

3 and its nonwandering set be composed of l ≥ 2 sources, l − 1
saddles of Morse index 2 and one sink. Then V is topologically equivalent
to Vuns(l; l − 1).

Proof. Let f t denote the Morse–Smale flow generated by the vector
field V. Since the number of sources is greater than the number of saddles
of Morse index 2 by unity, then the attractive set A(f t) is a segment with
sinks and saddles. Moreover, the saddles and sinks occur alternatively, and
the endpoints of segment A(f t) are the sources. Following Lemma 1.1 [19],
the set A(f t) has a ball neighborhood that is the source of type (l; l − 1).
There is a sink beyond this neighborhood. This leads to the required result.
✷

4. Proofs of the main results

Proof of Theorem 1. Let v(C) be the magnetic field in B(C) formed by
the group C and V(C) be a continuation of the field v(C) to the 3D sphere S3.
Therefore, the field V(C) has an additional sink as compared to v(C). We
need to prove the inequality S− ≥ l− 1, where S− is the number of negative
null points of the vector field V(C). Let us prove this inequality by the
method of mathematical induction where the inductive step is done by the
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number l = N+ of the positive charges (which is equal to the number of
sources of the field V(C)). We remind that V(C) is the Morse–Smale vector
field, which induces the Morse–Smale flow f t in S

3.
Firstly, we show that there exists at least one negative null point for

any l ≥ 2 (this will be simultaneously a proof of the initial step at l = 2).
Let A = A(f t) be a union of all sinks and unstable (1D) separatrices of all
the saddles of Morse index 1. Let us assume that the above statement is
false. Then the complement of A is a union of the nonintersecting unstable
(3D) manifolds of l ≥ 2 sources. Since a complement of the 1D graph A

is a connected set, then we get a contradiction to the connectivity of the
set S3\A.

Let us assume that the statement is proved for the number of sources
2, . . . , l ≥ 2 and show that it will be true for l + 1 ≥ 3. As follows from the
previous discussion, there exists at least one saddle σ with Morse index 2.
Two (1D) stable separatrices Seps1 and Seps2 of the saddle σ belong to the
unstable manifolds of the sources α1 and α2, respectively. Let us consider
two cases: (1) α1 6= α2 and (2) α1 = α2. In the first case, the set α1 ∪Seps1 ∪
σ ∪ Seps2 ∪ α2 = S is a repelling set. It follows from α1 6= α2 that this set S
has a neighborhood homeomorphic to a 3-ball, which looks like the source.
Then the original flow can be replaced by the flow with one source instead of
two sources α1, α2 and the saddle σ. The resulting flow satisfies the inductive
assumption. Since this flow has exactly one source and one saddle less than
before, we get the required estimate for the original flow. As follows from the
above argumentation, if there exists a saddle with Morse index 2 for which
case (1) is realized, then the inequality S− ≥ l − 1 is proved.

In the second case, when α1 = α2, without loss of generality we can
believe that this case is realized for all the saddles with Morse index 2. Then
each such saddle is uniquely associated with a source, σ 7→ α = α1 = α2. As
a result, we get a stronger inequality S−≥ l.

Therefore, the inequality S− ≥ l − 1 is proved for any group of charges
containing l ≥ 2 positive charges. We note that if there are no negative
charges in the group, then N+ = l and N− = 0, and consequently the
inequality S− ≥ l − 1 follows from Corollary 4.

If S− = l− 1, then formula (1) leads to S+ = 0, and consequently all the
null points are negative. Therefore, there are no separators in B(C).

Uniqueness of the topological structure follows immediately from Propo-
sition 1. ✷
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Proof of Theorem 2. Let v(C) be the vector field in B(C) formed by
the group C and V(C) be a continuation of the field v(C) to the 3D sphere S3.
It is specified that N+ = l, S− = l and N− = 0. Then formula (1) leads to
S+= 1. Let σ0 denote the single saddle with topological index minus one.

Let f t be the Morse–Smale flow generated by the vector field V(C) in
the 3D sphere S

3. We consider the connected 1D graph R(f t) composed of
all 1D stable manifolds of the saddles and all sources of the flow f t. Let us
remind that R(f t) is a repelling set of the flow f t.

Proposition 2. The graph R(f t) has the neighborhood U(R) possessing the
following properties:

• the boundary ∂U(R) of the neighborhood U(R) is transversal to the
flow f t, and trajectories of the flow leave U(R) with increasing time;

• the neighborhood U(R) is homeomorphic to a solid torus (consequently,
the boundary ∂U(R) is homeomorphic to 2D torus);

• there exists the saddle σ ∈ U(R) (the negative null point) whose 2D
unstable separatrix W u(σ) intersects the torus ∂U(R) along a closed
curve homotopic to the null meridian of the torus ∂U(R).

Proof of Proposition 2. According to our conditions, vertices of the
graph R(f t) are composed of l saddle and l source points; so that exactly
two arcs enter the each saddle point, and at least one arc leaves the each
source point. Then R(f t) contains the simple cycle C of type (2; 3), which
is supplemented by some (probably, zero) number of segments; each of these
segments contains the equal numbers of source and saddle points (which equal
the number of arcs in the segment). The cycle C has a neighborhood that is
homeomorphic to a solid torus; and the trajectories leave it with increasing
time, because C possesses the type (2; 3). Without loss of generality we can
believe that there is no sink in this neighborhood (otherwise, the neighbor-
hood can be decreased). Each of the attached segments has a neighborhood
homeomorphic to a ball, and the trajectories leave this ball with increasing
time. Consequently, there exist the required neighborhood U(R) without a
sink. Since C contains at least one saddle, its 2D unstable separatrix must
intersect ∂U(R) along a closed curve homeomorphic to meridian of the torus.
So, Proposition 2 is proved. ♦

Note that the graph A(f t), which is an attracting set of the flow f t,
represents a simple cycle composed of the sink ω0, saddle σ0 and two its

13



1D unstable separatrices. Consequently, A(f t) has the neighborhood U(A)
homeomorphic to a solid torus, so that its boundary ∂U(A) is transversal to
the flow f t, and the trajectories enter U(A) with increasing time. For the
sufficiently small neighborhood U(A), a 2D stable separatrix of the saddle σ0

intersects the 2D torus ∂U(A) along a closed simple curve homotopic to a
meridian of the torus ∂U(A). Let this curve be denoted by µ0.

Without loss of generality we can believe that the neighborhoods U(R)
and U(A) do not intersect each other. Since their union contains all equilib-
rium states of the flow f t, any positive semitrajectory with the initial point
at ∂U(R) must intersect the torus ∂U(A). Consequently, the sphere S

3 can
be presented as two solid tori U(R) and U(A) where their boundaries ∂U(R)
and ∂U(A) are matched to each other. Let ϑ : ∂U(A) → ∂U(R) be such
homeomorphism that S3 = U(A)

⋃

ϑU(R). As is known, a gluing of two solid
tori results in a 3-sphere only when a meridian in one boundary torus is
matched to the parallel (which may be rotated a few times along the merid-
ian) in another boundary torus. Consequently, the image of curve µ0 with
respect to ϑ is a closed curve, which intersects any closed curve at ∂U(R) ho-
motopic to the null meridian of the torus ∂U(R). Consequently, there exists
at least one separator. ✷

The proof of Proposition 2 immediately leads to the following statement,
which will be used later.

Proposition 3. Let the premises of Theorem 2 be satisfied, and let f t be the
Morse–Smale flow generated by the vector field V(C) in the 3D sphere S

3,
which is a continuation of the magnetic field in B(C). Let us assume that
the graph A(f t) is a simple closed curve. Then there exit at least l separators
in B(C).

Proof. In designations of Proposition 2 we get that the unstable 2D
separatrix of each saddle from ∂U(R) intersects ∂U(R) along a closed curve
homotopic to null meridian of the torus ∂U(R). Since ∂U(R) contains l sad-
dles, there exist at least l separators. ♦

Proof of Theorem 3. For the sake of simplicity, we construct the
required bifurcation for l = 2. As will be seen from our discussion, such
bifurcation can be constructed with an arbitrary number l ≥ 2 of the positive
charges. Let us introduce two smooth functions a(µ) and b(µ) depending on
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Figure 5: Phase portrait in the plane z = 0 at 0 ≤ µ < 0.1 (a), µ = 0.1 (b) and
0.1 < µ ≤ 1 (c).

the parameter 0 ≤ µ ≤ 1 by the following way:

a(µ) =







1 at 0 ≤ µ ≤ 0.1
� at 0.1 ≤ µ ≤ 1
0 at µ = 1,

b(µ) =







0.1 at µ = 0
� at 0 ≤ µ ≤ 0.1
0 at 0.1 ≤ µ ≤ 1

Here, symbol � denotes that the function decreases monotonically.
Let us consider the following set of differential equations in the Euclidean

space R
3 with the cylindrical coordinate system (̺;ϕ; z):

˙̺ = [̺+ b(µ)] [̺− 1 + 4a(µ)Ψ(ϕ) + b(µ)] , (2)

ϕ̇ = − sin(2ϕ), (3)

ż = z, (4)

where

Ψ(ϕ) = sin2

(

ϕ− π
2

2

)

sin2

(

ϕ− π

2

)

sin2

(

ϕ− 3π
2

2

)

.

All equilibrium states of the system are in the plane z = 0, which is a repeller
for the vector field defined by this system. Since the set of equations can be
split into the first two equations (2), (3) and the third equation (4), it is
sufficient to consider a phase portrait in the plane z = 0. The equilibrium
states in this plane can be only at the rays ϕ = 0, ϕ = π

2
, ϕ = π, and ϕ = 3π

2
.

At 0 ≤ µ < 0.1, the functions behave as a(µ) = 1, 0.1 ≥ b = b(µ) > 0.
Therefore, equation (2) takes the form:

˙̺ =

{

(̺+ b)2 at ϕ = 0,
(̺+ b)(̺+ b− 1) at ϕ ∈ {π

2
, π, 3π

2
}.
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Consequently, there are three equilibrium states: O2(1 − b; π
2
) is a source,

O3(1 − b; π) is a saddle, and O4(1 − b; 3π
2
) is a source; see Fig. 5(a). The

saddle O3(1− b; π) in space has the Morse index equal to 2. Since there are
no other saddles, the separators are absent.

At µ = 0.1, the functions are: a(µ) = 1, b(µ) = 0. Then, equation (2)
takes the form:

˙̺ =

{

̺2 at ϕ = 0,
̺(̺− 1) at ϕ ∈ {π

2
, π, 3π

2
}.

So, the saddle–node O0(0; 0) in the origin of coordinates is added to the
previous equilibrium states O2(1;

π
2
), O3(1; π), and O4(1;

3π
2
); see Fig. 5(b).

At last, at 0.1 < µ ≤ 1 the functions behave as 1 > a(µ) = a ≥ 0,
b(µ) = 0. Therefore, equation (2) takes the form:

˙̺ =

{

̺(̺− 1 + a) at ϕ = 0,
̺(̺− 1) at ϕ ∈ {π

2
, π, 3π

2
}.

Consequently, the saddle–node O0(0; 0) in the plane (̺;ϕ) decays into the
sink O0(0; 0) and saddle O1(1 − a; 0); see Fig. 5(c). Two separators are
formed. ✷

5. Discussion and Conclusions

1. Using the Morse–Smale theory, we derived a set of constraints on the
number of the magnetic-field sources (the effective “magnetic charges”)
and the null points of various types (positive and negative), which
should be a valuable tool for analyzing the structure of complex mag-
netic fields, particularly, in the solar anemone flares. On the one hand,
the formulas presented in Sections 2–4 are less powerful than the ones
derived in the old paper [9], because they are based on the purely
topological consideration and, therefore, do not specify any relations
between the positions of the magnetic charges and null points. On
the other hand, these formulas are more general than the previously-
known ones, because they are applicable to the arbitrary number of the
charges. Thereby, the Morse–Smale inequalities impose the non-trivial
constraints, enabling us to filter out the magnetic-field configurations
that cannot be actually realized.
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2. An important prerequisite for application of the Morse–Smale inequal-
ities is the requirement that the group of the magnetic charges is pos-
itively (or negatively) unbalanced, as defined in Section 2. Of course,
this narrows the scope of applicability of the above-mentioned inequal-
ities to the particular configurations of solar magnetic fields. However,
as was demonstrated in the recent observational work [20], the anemone
microflares often develop in the regions with unbalanced magnetic po-
larity. So, the applicability of the Morse–Smale constraints to the these
cases is well justified.

3. At last, an attention should be paid to the correct physical interpre-
tation of our mathematical constraints. Namely, as follows from the
discussion in Section 1.1, if S±

in is the number of “physical” null points
in the plane of magnetic charges and S±

out is their number out of this
plane, then S± = S±

in +2S±

out. On the other hand, all magnetic charges
should be taken with the coefficient of unity, because in all physically-
relevant situations they must be localized in the same plane.
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